
1

Welcome to Software Analysis!

In this course, we will study the theory and practice of software analysis, which lies at

the heart of many software development processes such as diagnosing bugs, testing,

debugging, and more.

What this class won’t do is teach you basic concepts of programming. Instead,

through a mix of basic and advanced exercises and examples, you will learn

techniques and tools to enhance your existing programming skills and build better

software.

2



3 4

So why should you take this course?

Bill Gates once said and I quote “We have as many testers as we have developers.

And testers spend all their time testing, and developers spend half their time testing.

We're more of a testing, a quality software organization than we're a software

organization."

In this course, you will learn modern methods for improving software quality in a

broad sense, encompassing reliability, security, and performance.

This will enable you to become a better and more productive software developer or

tester, as the aspects that we will address in this course, such as software testing and

debugging, comprise over 50% of the cost of software development.

You will also be able to implement these methods in specialized tools for software

diagnosis and testing tasks. An example task is systematically testing an Android

application in various end-user scenarios.

But let’s face it: you’re really here for the war stories.



5

The Ariane Rocket Disaster of 1996 is a war story of epic proportions.

Here is a video of the maiden launch of the Ariane Rocket in 1996 by the European

Space Agency.

https://www.youtube.com/watch?v=PK_yguLapgA&t=63

Roughly 40 seconds after the launch, the rocket reaches an altitude of two and a half

miles. But then it abruptly changes course and triggers a self-destruct mechanism,

destroying its payload of expensive scientific satellites.

So why did this happen, and what was the aftermath of this disaster? Let’s take a look.

6

The cause of the disaster was diagnosed to be a kind of programming error called a

numeric overflow error, in a program running on the Ariane rocket’s onboard

computer.

The error resulted from an attempt during takeoff to convert one piece of data -- the

sideways velocity of the rocket -- from a 64-bit format to a 16-bit format. The number

was too big to fit and resulted in an overflow. This error was misinterpreted by the

rocket’s onboard computer as a signal to change the course of the rocket.

This failure translated into millions of dollars in lost assets and several years of

setbacks for the Ariane Program. The methods that we will learn in this course could

have prevented this error.

To read more about this disaster access the link provided in the lecture handout.

[http://www.around.com/ariane.html]

Now let’s look at another problem that is more earthly and affects everyday users of

software.



7

While the Ariane disaster was a consequence of a programming error, at least the

damage was an unintended consequence.

On the other hand, we have security vulnerabilities, wherein malicious hackers can

exploit these errors in everyday mobile and web applications to compromise the

security of the underlying systems and data.

This is a widespread problem, and it has been since the early days of the Internet.

Several examples of programming bugs leading to security vulnerabilities you may

have heard of include:

● Moonlight Maze, which probed American computer systems for at least two years

since 1998,

● Code Red, which affected hundreds of thousands of Microsoft web servers in 2001,

● Titan Rain, a series of coordinated attacks on American computer systems for three

years since 2003,

● Stuxnet, a computer worm that shut down Iranian nuclear facilities in 2010, and

● Heartbleed, a security bug that allowed to steal information protected using the

popular OpenSSL cryptographic software library.

And the problem has only gotten worse with the advent of smartphones; now you too

can make yourself vulnerable to programming disasters simply by installing an app.

8



9 10



11

Program analysis is the process of automatically discovering useful facts about

programs. An example of a useful fact is a programming error. We saw an example of

a programming error that was responsible for the Ariane disaster, and others that

underlie security vulnerabilities.

Program analysis as a whole can be broadly classified into three kinds of analyses:

dynamic, static, and hybrid.

Dynamic analysis is the class of run-time analyses. These analyses discover

information by running the program and observing its behavior.

Static analysis is the class of compile-time analyses. These analyses discover

information by inspecting the source code or binary code of the program.

Hybrid analyses combine aspects of both dynamic and static analyses, by combining

runtime and compile-time information in interesting ways.

Let’s take a closer look at dynamic and static analyses.

12

Dynamic program analysis infers facts about a program by monitoring its runs. Here

are four examples of well-known dynamic analysis tools.

Purify is a dynamic analysis tool for checking memory accesses, such as array bounds,

in C and C++ programs.

Valgrind is a dynamic analysis tool for detecting memory leaks in x86 binary

programs. A memory leak occurs when a program fails to release memory that it no

longer needs.

Eraser is a dynamic analysis tool for detecting data races in concurrent programs. A

data race is a condition in which two threads in a concurrent program attempt to

simultaneously access the same memory location, and at least one of those accesses is

a write. Data races typically indicate programming errors, as the order in which the

accesses in a data race occur can produce different results from run to run.

Finally, Daikon is a dynamic analysis tool for finding likely invariants. An invariant is

a program fact that is true in every run of the program.



13

Static program analysis infers facts about a program by inspecting its code. Here are

four examples of well-known static analysis tools.

Tools such as Lint, FindBugs, and Coverity inspect the source code of C++ or Java

programs for suspicious error patterns.

SLAM is a tool from Microsoft that checks whether C programs respect API usage

rules. This tool is used by Windows developers to check whether device drivers use

the API of the Windows kernel correctly.

Facebook Infer is a static analysis tool developed by Facebook for detecting memory

leaks in Android applications.

Finally, ESC/Java is a tool for specifying and verifying invariants in Java programs.

We will look at an example of an invariant next.

14



15

Let’s do the following exercise to illustrate a concrete example of a useful program

fact, namely, a program invariant.

Consider the following program which reads a character from the input using function

getc(). If the input is the character ‘a’, it takes the true branch, otherwise it takes the

false branch.

Recall that an invariant is a program fact that is true in every run of the program.

An invariant at the end of this example program is (z == c) for some constant c. What

is c? Let’s figure it out.

16

The value of c is 42. To see why, we need to reason about only two cases over all runs

of this program.

In the runs where the true branch is taken, the value of z is p(6) + 6, which is 6*6 + 6,

which is 36 + 6, which is 42.

In the runs where the false branch is taken, the value of z is p(-7) - 7, which is (-7*-7)

- 7, which is 49 - 7, which is 42 again.

Thus, the value of c is 42. We have thus shown that (z == 42) is a program invariant at

the exit of this program.

Now let us slightly change this program to call disaster whenever the value of z is not

equal to 42.

Then, notice that the invariant we just discovered is a useful fact for proving that this

program can never call disaster!



17

Now let’s see how the different kinds of program analyses fare at discovering

program invariants.

Let’s first consider dynamic analysis. For simplicity, the shown program has only two

paths. But in general, programs have loops or recursion, which can lead to arbitrarily

many paths. Since dynamic analysis discovers information by running the program a

finite number of times, it cannot in general discover information that requires

observing an unbounded number of paths. As a result, a dynamic analysis tool like

Daikon can at best detect *likely* invariants.

From any run of the shown program, Diakon can at best conclude that (z == 42) is a

*likely* invariant. It cannot prove that z will always be 42, and that the call to disaster

can never happen.

This is not to say that dynamic analysis is useless. For one, the information that z

might be 42 could be a useful fact. More importantly, Daikon can conclusively rule

out entire classes of invariants even by observing a single run.

For instance, from any run of this example program, Daikon can conclude that

(z == c) is definitely not an invariant for any c other than 42, such as 30.

On the other hand, to conclusively determine that (z == 42) is an invariant, and

therefore showing that the program will never call disaster, we need static analysis.

18

Now let’s consider how static analysis works on this example.

Static analysis can conclusively say that (z == 42) is an invariant by inspecting the

source code of the program. The reasoning it applies is similar to what we ourselves

used in the quiz. Recall that we too inspected the source code to determine that the

constant c has value 42.

Static analysis can therefore show at compile-time that the program will never call

disaster at run-time.

You should now be able to see how the Ariane disaster could have been averted using

static analysis.

Next, we will delve deeper into how static analysis discovers invariants of the form (z

== 42) even for programs that have an unbounded number of paths.



19 20

Consider the problem of proving assertions of the form “variable == constant”, such

as “y == 7” in this program.

We can pose this question in terms of a classic static analysis problem.

This problem aims to find variables that have a constant value at a given program

point.

We will explain step-by-step how a static analysis discovers that variable y has the

value 7 at the end of each iteration of the loop in this program.



21

Let’s first introduce common terminology. Static analysis typically operates on a

suitable intermediate representation of the program. One such representation shown

here is a control-flow graph. It is a directed graph that summarizes the flow of control

in all possible runs of the program. Each node in the graph corresponds to a unique

statement in the program, and each edge outgoing from a node denotes a possible

successor of that node in some execution.

To achieve its stated goal, our static analysis tracks the values of the three variables in

this program, x, y, and z, at each program point. This is called an abstract state, in

contrast to a concrete state which tracks the actual values in a particular run. Since

static analysis does not run the program, it does not operate directly over concrete

states. Instead, it operates over abstract states, each of which summarizes a set of

concrete states. This is called the abstract semantics as opposed to the concrete

semantics.

As a result of this summarization, the analysis may fail to accurately represent the

value of a variable in an abstract state, which we denote using a question mark. While

this ensures the termination of the analysis even for programs with an unbounded

number of paths, it can also lead the analysis to miss variables that have a constant

value at a given program point. For this reason, we say that the analysis sacrifices

completeness. Conversely, whenever the analysis concludes that a variable has a

constant value at a given program point, this conclusion is indeed correct in all runs of

the program. For this reason, we say that the analysis is sound.

22

Designing a static analysis is an art: while the concrete semantics is dictated by the

programming language at hand, there is no single best choice of abstract

semantics. As we shall see later in this lesson, different choices yield different

analysis results, and the right choice is dictated by the consumer of the analysis. Here,

we will take a look at a particular abstract semantics for our problem of finding

variables that have a constant value at a given program point.

The first step in designing an abstract semantics is to design an abstract domain. This

abstract domain shows the possible abstract values that each integer-typed variable in

the program can take. Besides all possible constant values, we also include two special

values: ‘top’, denoted by question mark, to denote that the value is unknown to the

analysis, and

‘bottom’ to denote that the value is undefined by the analysis.

The abstract values are ordered in a structure called a lattice which dictates the

possible orders in which a variable’s abstract value might change as the analysis

proceeds. Let's make things more clear by looking at an example.



23

We will use a common static analysis method called iterative approximation.

The analysis begins with abstract value ‘top’ for the three variables at the entry of the

program and the abstract value ‘bottom’ at all other program points. This is the initial

state of the analysis and captures the intuition that it has not yet visited any program

point except the entry point. Furthermore, it captures the intuition that, at the entry

point, variables x, y, and z are uninitialized and could therefore take arbitrary concrete

values.

The term "program point" is ambiguous and representation dependent. It is unclear

whether we mean before, after, or during a statement is executed. We will discuss this

more formally later in the course. For the purpose of this module, we will consider a

program point as an edge in the control flow graph.

24

At each step of the iterative approximation process, the analysis updates its knowledge

about the values of the three variables at each program point. The analysis does this

update based upon the information that it has inferred at the immediate predecessors

of that program point.

For instance, after the statement that assigns 3 to z, the analysis knows that the value

of z is the constant 3.

Now, the analysis reaches the conditional check in the loop "true?". In this case, our

conditional expression is simple and it is easy to see that the true branch will always

be taken, and the analysis updates its knowledge of the values of x, y, and z in that

branch accordingly.

We call the false branch "infeasible" as the program will never take that path. In

general, however, conditionals are not always this simple. Thus, the analysis designer

has yet another choice to make. That is, should our analysis attempt to interpret

conditionals? If the analysis were to not interpret conditionals, then it would have to

assume that the false branch is feasible, and update the abstract state at the exit of the

program accordingly, to reflect its knowledge that the values of x and y are unknown,

and z is 3.

Another interesting update occurs in the true branch of the condition that checks

whether the value of x is 1. Assuming our analysis attempts to interpret conditionals,



‹#›

it knows that the value of x must be the constant 1 in the true branch. However, notice

that in the false branch, the analysis does not know whether x has a constant value in

all runs of this program. So it continues to indicate that the value of x is unknown.

Regardless of whether our analysis attempts to interpret conditionals, this is the most

precise abstract representation that we can have for x. This is because x != 1 cannot be

represented by our abstract domain. All we know is that x is some value other than 1,

so we must represent it as unknown.

Similarly, after the statement that assigns 7 to y, the analysis knows that the value of y

is the constant 7. The analysis has thus concluded that, every time this program point

is reached in any run, x has value 1, y has value 7, and z has value 3.

Now let’s look at the statement that assigns the expression z + 4 to y. Since the

analysis had previously discovered that the value of z before this statement is the

constant 3, it can conclude that the value of y after this statement must be 3 + 4, which

is 7.

At this point, the analysis has concluded that, at each immediate predecessor of the

assertion, the value of y is 7. It thereby concludes that the value of y in the assertion

must be 7, and therefore that the assertion is valid.

The term iterative approximation implies that in general, the analysis might need to

visit the same program point multiple times. This is because of the presence of loops,

which can require the analysis to update facts that were previously inferred by the

analysis at the same program point. We will emphasize this aspect in the following

example.

25

Consider the following program. The analysis begins with the abstract value ‘top’ for

variable b at the start of this program and the abstract value ‘bottom’ everywhere

else. In each of the three boxes shown, let’s determine the value of variable b that the

analysis infers at the corresponding program point after completing its analysis. We

will call these program points the loop header, the entry of the loop body, and the exit

of the loop body, respectively. Be sure to take looping into consideration when

performing your iterative analysis.



26

The value of b in the first box is 1. This is because immediately after the assignment

of 1 to b, our static analysis knows that the value of b is 1.

As the analysis proceeds, it discovers that the value of b at the entry of the loop body

is still 1.

Similarly, it discovers that the value of b at the exit of the loop body is 2. But the

analysis is not done yet. It must analyze the loop again to ensure that these values are

indeed sound.

The analysis revisits the entry of the loop body. This time, it notices that the value of

b can be 1 or 2. So it updates the value of b at the entry of the loop body to unknown.

Continuing further, the analysis updates the value of b at the exit of the loop body to

unknown as well.

Due to these updates, the analysis analyzes the loop yet again. But this time, it

concludes that the values of b at the entry and exit of the loop body have

saturated. Therefore, the correct value of b in the 2nd and 3rd boxes is the unknown

value.

Combining multiple abstract states from different program paths is called merging.

Again, the analysis writer must make a decision in defining the combination operator.

In this example, the combination operator is defined as a form of conjunction. That is,

‹#›

for b to be equal to 1 in our abstract state, it must be equal to 1 in ALL program paths.

Thus, when we merge the states from the first and second iterations of our loop, b is

unknown.

However, consider an analysis in which we are trying to prove that b may be equal to

1 on some program path. In this case, we would want to define our combination

operator as a form of disjunction. If b is equal to 1 on at least one program path, it

should be equal to 1 in our abstract state. Again, this choice is made by the analysis

developer by considering tradeoffs and the needs of the analysis user. We will look at

the primary tradeoffs and consumers of program analysis later in this module.



27

In summary, a static analysis consists of the following components:

First we must specify the program representation. In order to analyze a program, we

must be able to represent it precisely. Choices in program representation range

broadly with different levels of abstraction. Common representation choices include

control-flow graphs, Abstract Syntax Trees (ASTs), and bytecode.

Next, we must specify the abstract domain. Static analysis does not operate on actual

program values, so we must represent concrete states with an approximate, abstract

domain. In our example, we chose single constant values, in combination with ‘top’

and ‘bottom’ to comprise our abstract domain.

A transfer function specifies how to calculate the abstract state given a program

statement. For example, in our iterative analysis, given the statement "x=1", the

transfer function would set x to 1 in our abstract state. The transfer functions also

specify how to combine information at control-flow merge points.

Lastly, the designer must specify a fixed-point computation algorithm that invokes

the transfer functions of individual program statements to analyze the program. The

algorithm computes a "fixed-point" meaning that it terminates when the abstract states

are no longer changing.

At each step, the analysis designer has many choices. The correct choice depends on

‹#›

the application of the analysis as there is no single "best" static analysis design.



28

{QUIZ SLIDE}

Let’s do a quiz to reinforce the concepts we’ve covered so far. Consider the problem

of finding statements that may divide by zero. We will use a static analysis to solve

this problem on the shown program, which contains two division statements S1 and

S2.

An abstract domain suitable for this problem is the sign domain. It is a finite domain

in which an abstract value can be one of the following:

zero (0), which represents the integer value 0,

minus (-), which represents any negative integer value,

plus (+), which represents any positive integer value,

top, denoted by ?, which represents unknown, and

bottom, which represents uninitialized by the analysis.

Assume that your static analysis interprets conditionals such as x > 0.

29

{QUIZ SLIDE}

For your convenience, here is the control-flow graph corresponding to the program.

Enter the abstract value of x at program points S1 and S2.



30

{SOLUTION SLIDE}

The answer depends on if we decide to interpret conditionals. If our analysis does not

interpret conditionals, then it is easy to see that x is unknown at every program point.

Since this is not very useful, we presumed that the analysis does interpret conditionals.

The solution then is as follows. At S1, x is always positive, meaning that a divide-by-

zero error cannot occur. At S2, x is unknown, so it is possible that a divide-by-zero

error may occur. The reason is the statement that decrements x: x is always positive

before this statement and therefore it could be positive or zero after the statement. In

our abstract domain, the fact that x may be positive or zero is represented using the

abstract value ‘top’.

Notice that this approximation loses some information since ‘top’ denotes that x may

be positive, zero, or negative at S2, when in fact x can never be negative at S2. Such

approximations are so fundamental to program analyses that we will next characterize

program analyses based on the kinds of approximations they make.

31



32 33



34

Since there are many different ways to design a program analysis, it is important that

we have terms to characterize them. When we introduced static analysis, we discussed

that the abstraction causes us to lose some information, sacrificing completeness.

However, the analysis is sound because when it concludes some fact about the

program, it is indeed true in all runs of the program. Now, we will dive deeper into

these terms, and their consequences.

This figure shows a cross section of all possible programs plotted in three dimensions.

A program is labelled as "good" if it satisifies a particular property φ, and “bad” if it

violates the property.

For example, let us consider a divide-by-zero analysis. A "good" program satisifes the

property φ that it contains no divide-by-zero errors whereas a “bad” program violates

this property in that it contains a divide-by-zero error. Consider this figure as the

ground truth that our analysis is attempting to discover.

35

Let us consider our previous example.

The program on the left does not contain any divide-by-zero error as x is greater than

zero at the entry of the loop body in all iterations of the loop. So, this program is

considered good.

The program on the right does contain a divide-by-zero error in at least one run of the

program. Consider the iteration in which x equals 1 at the entry of the loop body. The

value is decremented to zero prior to dividing. So, this program is considered bad.

Given this ground truth, let us now proceed to characterize different program analyses

in two aspects that we have informally considered thus far: soundness and

completeness.



36

An analysis either accepts or rejects a given program.

We will depict each analysis in our illustration by an oval: the programs inside the

oval are accepted by the analysis while the programs outside the oval are rejected by

it.

An analysis is sound if it never accepts bad programs. That is, whenever a sound

analysis accepts a program, that program is indeed free of divide-by-zero errors.

An analysis is complete if it never rejects good programs. That is, whenever a

complete analysis rejects a program, that program indeed contains a divide-by-zero

error.

A trivial analysis would be sound if it rejected every program. Conversely, a trivial

analysis would be complete if it accepted every program. Thus, in designing a useful

analysis, it is important to balance these two properties.

Now that we have covered these definitions, let us consider the example analysis,

depicted by the blue oval. Let's take a moment to consider whether this analysis is

sound, complete, or neither. [pause]

The example analysis is sound but incomplete. It is sound as all programs it accepts

are indeed good. It is not complete because it rejects some good programs.

‹#›

We call a good program that is rejected by an analysis as a false positive. The static

analysis examples we saw earlier in this module are examples of this kind of analysis.

Let’s ascertain this next by applying one of those static analyses to our example good

and bad programs.



37

Consider the program on the left.

Consider the static analysis that uses the sign abstract domain and does not interpret

conditionals.

At the point of the assertion, this analysis has no information about x. That is, x has

abstract value ‘unknown’. Such an analysis would reject this program and report a

potential divide-by-zero error. This example shows how the choice of abstraction in

an analysis can result in false positives.

Consider a different static analysis that uses the sign abstract domain but chooses to

interpret conditionals.

This analysis would conclude that x is always positive at the point of the assertion,

and accept this program, thereby averting a false positive.

Finally, consider the program on the right.

Regardless of whether our static analysis interprets conditionals, it has no information

about x at the point of the assertion. That is, x has abstract value ‘unknown’.

Therefore, the analysis rejects this program and reports a potential divide-by-zero

error.

38

Now, let's consider a different kind of program analysis, depicted by the green oval.

Let's take a moment to consider whether this analysis is sound, complete, or neither.

This analysis is complete but not sound. It is complete as all programs it rejects are

indeed bad. It is not sound because it accepts some bad programs.

We call a bad program that is accepted by an analysis as a false negative. Dynamic

analysis is an example of this kind of analysis. Let’s ascertain this next by applying a

dynamic analysis to our example good and bad programs.



39

Recall that a dynamic analysis infers facts about a program by monitoring its runs on a

suite of test inputs. Similar to a static analysis, a dynamic analysis may abstract away

information -- for instance, to keep the monitoring overhead low – but assume that the

dynamic analysis we are considering here does not perform any abstraction.

Suppose this analysis runs the program on the left with value x=3.

In this run, the analysis does not encounter a divide-by-zero error. The analysis will

likely try many other values of x before accepting this program.

Now, suppose the same dynamic analysis runs the program on the right with the value

x=-3. In this run, the analysis again does not encounter a divide-by-zero error.

This is because we never enter the loop or execute the problematic code. More

generally, as long as the analysis runs this program with values of x less-than-or-

equal-to 0, it will not detect the divide-by-zero error. This example illustrates how a

dynamic analysis can incur a false negative.

40

{QUIZ SLIDE}

OK, it's time for another quiz. Dynamic and static analyses strike different tradeoffs in

terms of their cost and effectiveness. Match each box with its corresponding feature.



41

{SOLUTION SLIDE}

Let’s review the answers. First we will focus on cost. Since dynamic analysis gathers

information by running the program, its cost is proportional to the execution time of

the program. A longer run thus costs more than a shorter one. Static analysis, on the

other hand, gathers information by inspecting the program’s code, and therefore its

cost is proportional to the size of the program’s source code. A larger program thus

costs more than a smaller one.

Now let’s look at effectiveness. As we saw in the divide-by-zero examples, a dynamic

analysis may miss errors, as it inspects only a finite number of runs, whereas the

program may contain an unbounded number of paths, some of which are not covered

by those runs. We say that a dynamic analysis is inherently “unsound”: in other words,

it may produce false negatives. On the other hand, it is possible to design a static

analysis that does not miss errors, but such an analysis may report spurious errors. We

say that a static analysis is inherently “incomplete”: in other words, it may produce

false positives.

42



43

Let us consider a new kind of program analysis depicted by the red oval. Take a

moment to understand if this analysis is sound, complete, or neither.

This analysis is neither sound nor is it complete. It rejects some good programs,

marked in blue, and accepts some bad programs, marked in green. Thus, it incurs both

false positives and false negatives. However, that does not necessarily mean that this

analysis is useless. In fact, this analysis may in practice be more accurate than the two

kinds of analyses we previously discussed.

Consequently, we need a way to measure accuracy of analysis that goes beyond the

absolute categorizations of soundness and completeness.

44

We arrive at four quadrants depending on the program’s ground truth – whether it is

good or bad – and the outcome of the analysis on the program – accept or reject. An

"accurate" analysis should accept most good programs, reject most bad ones, and

output few false positives and few false negatives.

Precision and Recall are standard ways to measure the accuracy of systems that

output binary (yes/no) classifications. Since an analysis can be viewed as a system

with binary output – it either accepts or rejects a given program – we adopt these

metrics to quantify the accuracy of a given analysis.

Precision measures the number of bad programs among all programs that the analysis

rejected. It measures the false positive rate of the analysis, and is calculated as the

number of true positives divided by the total number of rejected programs.

Recall measures the number of bad programs that the analysis rejected among all bad

programs. It measures the false negative rate of the analysis, and is calculated as the

number of true positives divided by the total number of bad programs.

Informally, precision measures "how correct our results are" while recall measures

"how complete are results are." In this way, precision and recall fill the gap between

the absolute soundness and completeness categorizations.



45

Recall that an accurate analysis is one with low false positive rate and low false

negative rate.

This is captured using the F-Measure, or F1 score, which is a standard measure of

accuracy that combines both precision and recall. It is computed by taking the

harmonic mean of precision and recall.

An analysis that has perfect precision and recall would have an F-Measure of 1 while

the worst analysis would have an F-Measure of 0. So, we aim for a combination of

precision and recall that leads to an F-Measure near 1.

The F-Measure provides an intuitive way to quantify the accuracy of an analysis.

However, it assumes that precision and recall are equally important. This is not always

the case.

The relative importance of precision and recall is highly dependent on the application

of the analysis. Later in this lesson, we will see some examples in which different

types of misclassifications incur different costs.

46

{QUIZ SLIDE}

Let’s do a quiz to reinforce our understanding of how to compare different program

analyses by calculating their precision, recall, and F-Measure. Consider the following

four analyses:

A sound and complete analysis;

A sound but incomplete analysis with a 40% false positive rate;

A complete but unsound analysis with a 40% false negative rate; and

An analysis that is neither sound nor complete, and has a 30% false positive rate and a

70% false negative rate.



47

{SOLUTION SLIDE}

The solution is as follows. An analysis that is sound and complete has the highest

possible precision, recall, and F-Measure, which is 1.

Precision is the fraction of rejected programs that are bad whereas recall is the fraction

of bad programs that are rejected.

For the 2nd analysis, we know from its false positive rate of 40% that the fraction of

programs rejected by it that are good is 0.4. Therefore, its precision is 1 – 0.4, or 0.6.

Since this analysis is sound, its recall is 1. The F-Measure is the harmonic mean of the

precision and recall, which is 2 / (1/0.6 + 1/1) = 0.75.

For the 3rd analysis, we know from its false negative rate of 40% that the fraction of

bad programs that are accepted by it is 0.4. Therefore, its recall is 1 - 0.4, or 0.6. Since

the analysis is complete, its precision is 1. The F-Measure is the same as before, that

is, 0.75.

For the 4th analysis, we obtain a precision of 0.7 from its false positive rate of 30%,

and a recall of 0.3 from its false negative rate of 70%. The F-Measure calculated as

the harmonic mean of 0.7 and 0.3 evaluates to 0.42.

48

Now, let's consider the last kind of analysis: an ideal analysis. This analysis perfectly

classifies each program: it has no false positives and no false negatives. Equivalently,

it has an F-Measure of 1. Such an analysis is both sound and complete. Is it possible to

design such an analysis? Let’s find out.



49

Can a program analysis guarantee both soundness and completeness?

The answer is: not if we want the analysis to terminate on every given program!

Even seemingly simple program properties for realistic programming languages like C

and Java are undecidable. An example such property is whether a given point in a

given program is reachable on some input to that program.

You can find a link to recommended reading on the topic of undecidability in the

lecture handout.

https://en.wikipedia.org/wiki/Undecidable_problem

Designing a program analysis is thus an art that involves striking a suitable tradeoff

between termination, soundness, and completeness.

This tradeoff is typically dictated by the consumer of the program analysis. Let’s look

at the primary consumers of program analysis next.

50



51 52

There are three primary consumers of program analysis: compilers, software quality

tools, and integrated development environments.



53

Compilers bridge the gap between high-level programming languages and advanced

computer architectures.

They use program analyses to generate efficient code on a target architecture for

programs written in a high-level source language.

Let us see a simple example of how a program analysis can help a compiler generate

more efficient code.

Consider this example program.

We saw earlier in this lesson how a static analysis can discover the program invariant

(z == 42) at the end of this program. A compiler can use this invariant to simplify this

program.

The simplified program simply prints 42. It is easy to see that this simplified program

is more efficient than the original program: it runs faster, it is more energy-efficient,

and it is smaller in size.

54

The second key consumer of program analysis is software quality tools, which will be

the primary focus of this course.

This category broadly includes tools programmers use for tasks to improve software

quality, such as testing, debugging, and verification.

These tools use program analyses for various purposes such as finding programming

errors, proving program invariants, generating test cases, and localizing the causes of

errors.

Consider this example program again. The invariant (z == 42) discovered at this

program point by a static analysis could be used by a program verification tool to

prove that this program will never call disaster.



55

The third main consumer of program analysis is integrated development environments

such as Eclipse or Microsoft Visual Studio.

Such environments use program analyses to help programmers to understand

programs and to refactor programs, which is the process of restructuring a program

without changing its observable behavior.

These features are especially needed when dealing with large, complex programs

which are common in practice.

56

{QUIZ SLIDE}

Suppose the jagged SHADED portion denotes all programs that do NOT contain

divide-by-zero errors, and the UNSHADED portion within the black rectangle denotes

all programs that DO contain such errors.

Let A1, A2, and A3 be different program analyses which check for divide-by-zero

errors. Each analysis either ACCEPTS a given program (that is, declares it free of

divide-by-zero errors) or REJECTS it (that is, declares that some divide-by-zero error

exists in it).

For each analysis, the programs accepted by that analysis are contained INSIDE the

corresponding oval, and the programs rejected by that analysis are contained

OUTSIDE the corresponding oval.

Answer the following questions.

Is A1 Sound? Is A1 Complete?

Is A2 Sound? Is A2 Complete? And lastly,

Is A3 Sound? Is A3 Complete?



57

{SOLUTION SLIDE}

Let's review the solutions. We will use the term ‘correct program’ for a program that

does not contain any divide-by-zero error, and the term ‘buggy program’ for a

program that does contain a divide-by-zero error.

A1 is not sound as it accepts some buggy programs. That is, it incurs false negatives.

It is also not complete as it rejects some correct programs. That is, it incurs false

positives.

A2 is sound as it never accepts buggy programs. That is, it does not incur false

negatives. However, it is not complete as it rejects some correct programs. That is, it

incurs false positives.

A3 is not sound as it accepts some buggy programs. That is, it incurs false negatives.

However, it is complete as it never rejects correct programs. That is, it does not incur

false positives.

58

{QUIZ SLIDE}

NASA engineer Bob has been asked to apply program analysis to check for divide-by-

zero errors in software that will control NASA’s next billion-dollar space

mission. Which analysis (A1 / A2 / A3) should Bob use? Briefly justify your answer.



59

{SOLUTION SLIDE}

The correct answer is A2. Safety critical systems like infrastructure systems software,

aviation and aerospace software, and real time systems must be proven to be sound --

lives depend on them! If the program is accepted by A2, then Bob can be sure there

are no divide-by-zero errors in the code.

60

{QUIZ SLIDE}

Microsoft developer Ann has agreed to apply program analysis to check for divide-by-

zero errors in her programs, on the condition that it will not produce any false

alarms. Which analysis (A1 / A2 / A3) should Ann use? Briefly justify your answer.



61

{SOLUTION SLIDE}

The correct answer is A3. If Ann wants to use a program analysis that will not produce

false positives, she should use a complete analysis. A3 is the only analysis that is

complete. If it rejects a program, we can be sure that program has a divide-by-zero

error.

62



63 64

Let’s recap the main topics that we have covered in this lesson.

First, we introduced program analysis, a process for automatically discovering useful

facts about programs.

We then discussed two kinds of program analyses: dynamic analysis and static

analysis. The primary difference between these two kinds of analyses is that dynamic

analysis works by running the program whereas static analysis works by inspecting

the program’s code. We discussed the pros and cons of these two kinds of analyses.

We learnt about program invariants and their role as useful program facts. We

discussed how dynamic analysis can discover likely invariants, and how static

analysis can prove invariants.

We also saw step-by-step how static analysis can prove a certain kind of program

invariant using the method of iterative approximation.

We then learned how to characterize program analyses in terms of soundness and

completeness. We also explored precision and recall in an attempt to bridge to gap

between these absolute categorizations.

We learnt that the undecidability of even seemingly simple program properties

prevents program analyses from simultaneously guaranteeing the three desirable



‹#›

features of termination, soundness, and completeness.

Finally, we discussed the three main consumers of program analysis: compilers,

software quality tools, and integrated development environments.


