
This lesson introduces a powerful automated testing technique called dynamic

symbolic execution. This technique is based on hybrid analysis: it combines static

analysis and dynamic analysis in a manner that gains the benefits of both.

The goal of the technique is to maximize program path coverage and thereby help

uncover potential bugs. To this end, this technique systematically generates inputs to

a given program that drive its execution along different paths in the program.

The technique is highly versatile: it is not limited to any programming language

constructs or idioms, and while it may result in false negatives -- that is, it may miss

bugs -- it does not produce false positives, that is, every assertion violation it

discovers is indeed real.

The remarkable success of this technique has led to open-source as well as

commercial implementations of the technique for virtually every mainstream

programming language.

This lesson will present the principles underlying this technique and prepare you to

apply it to test small units of code as well as entire, large, complex programs.
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Writing and maintaining tests is tedious and error-prone. A compelling idea to

overcome this problem is automated test generation. This idea has several benefits.

First, it can be used to generate a test suite that can then be run regularly to check for

regressions in the program.

Second, it can be used to execute all reachable statements in the program, and thereby

attain high code coverage.

Third, it can be used to catch any assertion violations. Assertions, as you may recall,

are a general mechanism for specifying program correctness.
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In this lesson, we will discuss a new technique for automated test generation called

dynamic symbolic execution.

This technique keeps track of the program state both concretely, like a dynamic

analysis, and symbolically, like a static analysis.

It solves constraints to guide the program’s execution at branch points. In this manner,

it systematically explores all execution paths of the unit being tested.

Dynamic symbolic execution is an example of a hybrid analysis: it collaboratively

combines dynamic and static analysis.
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To understand how dynamic symbolic execution works, let’s visualize a program as a

binary tree with possibly infinite depth called the computation tree.

Each node in the tree represents the execution of a conditional statement, and each

edge represents the execution of a sequence of non-conditional statements. The left

child of a node N represents the branch point reached by taking the “false” branch at

N, and the right child of a node N represents the branch point reached by taking the

“true” branch at N.

Note that we’ve “unrolled” all loops in the program by representing each loop as a

sequence of consecutive if-then-else statements. This means that our tree might have

infinite depth, as some loops may be unbounded.

A path in the computation tree represents an equivalence class of inputs: if two inputs

lead to the same set of branch points and statements executed, we consider those

inputs to be equivalent. The goal of dynamic symbolic execution is to systematically

generate non-equivalent inputs, that is, inputs that lead the program’s execution along

different paths in its computation tree. We have numbered the nodes in this example

tree in a possible ordering, a depth-first ordering, in which dynamic symbolic

execution will visit them. But let’s not get too much into details of how dynamic

symbolic execution chooses paths quite yet. In fact, for computational trees with

infinite depth, this is a sophisticated problem!

Let’s start with a comparatively simple computation tree corresponding to the

following program test_me.

The program takes as input two integer variables x and y. It first tests whether 2*y ==

x. If 2*y != x, then the program exits normally. But if 2*y == x, then the program

proceeds to test whether x <= y+10. If x <= y + 10, then the program exits normally.

But if x > y + 10, then the program throws an error.

The computation tree that results from this program has just two nodes, corresponding

to the two branch points. The root node is labeled “2*y == x” which corresponds to

the outer branch point. If this test fails, then the program exits normally, so the root

has no left child. If the test succeeds, then we reach another branch point. So the root

has a right child, labeled “x <= y + 10” corresponding to the test we perform at this

second branch point.

If this test succeeds, then the program exits normally. If the test fails, then the

program throws an error, which we symbolize by marking the left edge of the

corresponding node by “ERROR”. In both these cases, there are no further child

nodes, as there are no additional branch points in the program.

In general, we will represent an assertion in this manner: perform a test, and if the test

fails, then the program reaches a distinguished ERROR label.



‹#›

One last point of interest is that, because the program has no unbounded loops, the

computational tree is finite.
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To better motivate the dynamic symbolic execution approach, let’s look at some

existing approaches for automated test generation.

First, we’ll consider random testing, in which we generate random inputs and execute

the program on these generated inputs.

Let’s look at the example program test_me, which takes an integer x, and, if x equals

94389, it raises an error. Otherwise, the program exits normally.

Assuming an int is 32 bits and each possible int has an equal chance of being

generated, the probability that our random input will detect this error is astronomically

small: one out of 2 to the 32nd power, which is about 23 billionths of a percent. So

there is a high probability that random testing will generate a false negative in a

limited amount of time: incorrectly stating that the ERROR label is unreachable.

Another approach that has existed since the 1970s is called “symbolic execution.” In

this approach, input variables are represented symbolically instead of by concrete

values. The program is executed symbolically, and symbolic path constraints are

collected as the program runs. At each branch point, we invoke a theorem prover to

determine whether a branch can be taken; if so, then we take the branch, otherwise,

we ignore the branch as dead code.

For example, in this new version of the program test_me, instead of testing that the

input variable x equals a particular integer value, we ask the theorem prover if there is

any integer value for x that satisfies the condition x * 3 != 15. The theorem prover

would respond “yes”, allowing us to deduce that the “false” branch is reachable.

Because the false branch terminates the program, we now ask the theorem prover if

the negation of x * 3 != 15 has any satisfying assignment (that is, does x * 3 == 15

have a satisfying assignment?). The theorem prover would respond “yes,” so we’d

explore the “true” branch of the first condition while “collecting” the symbolic

constraint that x * 3 == 15.

Next, we reach the second condition x % 5 == 0. We now ask the theorem prover if

the expression x * 3 == 15 AND x % 5 == 0 has a satisfying assignment. The theorem

prover would respond “yes,” so we’d explore the “true” branch, leading to program

termination. Finally, we negate the condition and ask if x * 3 == 15 AND x % 5 != 0

has a satisfying assignment. The theorem prover would respond “no,” meaning that

the false branch is unreachable, dead code. We therefore skip that branch. Since we



‹#›

have then explored all feasible paths and not reached an error, we can conclude that

the program will not raise an error in any execution.

However, because of the possibility of exponential explosion in branch conditions, it

becomes quickly obvious that this strategy does not scale for large programs.

Another problem with purely symbolic approaches is that they may not be powerful

enough to decide if a particular constraint has a satisfying assignment.

For example, in this version of the program test_me, we ask the theorem prover to

decide whether there exists an integer x such that 2 to the power x modulo a product

of two large prime numbers, denoted here by constant c, equals 17. If so, the program

throws an error. Otherwise, the program terminates normally.

Note that this particular condition is an instance of the discrete logarithm problem,

which is believed to be computationally intractable on classical computers. When

dealing with such a difficult question to resolve symbolically, our theorem prover

might throw up its hands and give up. In this situation, the theorem prover errs on the

side of soundness by declaring the condition to be feasible, even if there really is no

integer x such that 2^x modulo c equals 17. In this case, the symbolic execution

approach would yield a false positive, considering both branches of the condition to

be reachable when really only the “false” branch is reachable.
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A common theme in this course is to try to combine two approaches in order to get the

benefits of both without suffering from the limitations of either. In this case, we will

combine the concrete execution approach of random testing with the symbolic

execution approach we just discussed. This approach is called dynamic symbolic

execution, or DSE for short.

Here’s how it works: it initially sets the input values of the function to be tested

randomly, and observes the branches of computation that are taken. It also keeps track

of constraints on the program’s state symbolically.

Upon reaching the end of some computational path, DSE will backtrack to some

branch point and decide whether there is a satisfying assignment to the program’s

input variables that allows the other branch to be taken at that point. If so, the solver

generates such an assignment, and DSE continues onward. If not, then DSE ignores

that branch as dead code.

So far, this sounds much like symbolic execution. However, there’s one further

subtlety. If a condition becomes complex enough that the solver cannot find a

satisfying assignment, then the solver “plugs in” the concrete values that DSE is

working with to one or more variables in the constraints to simplify them. This

strategy makes the constraint solver into what is called an “incomplete” theorem

prover: it will never declare an unsatisfiable constraint to be satisfiable, but it may fail

to satisfy some satisfiable constraints because of the simplification being made. (This

‹#›

contrasts with pure symbolic execution, whose constraint solver was unsound -- it

would declare some unsatisfiable constraints to be satisfiable.)



Let’s walk through an example of how DSE would identify failure-generating inputs

to a function. In this example, we will be looking at the following functions: foo,

which takes an int v and returns the int 2 times v; and the function test_me, which

takes two ints, x and y, and has no return type. test_me operates as follows: it sets the

int z equal to foo of y. Then, if z equals x, it makes an additional check if x is greater

than y plus 10. If this second check passes, then the program throws an error. If

either of the checks fail, then the program terminates without error.

Let’s look at how DSE would work on the test_me function. First, two random inputs

would be generated for x and y: say, x = 22 and y = 7. Additionally, DSE would keep

track of the symbolic state of the program: x equals some number x_0 and y equals

some number y_0.

On the first line, integer z is assigned the output of the function foo applied to y. In

the concrete state, this means that z now equals 14. And in the symbolic state, the

variable z has the value 2 times y_0. Note that DSE has the ability to concretely and

symbolically compute the output of a call to a function, such as foo.



At the branch point “z == x”, DSE observes that the current concrete value of x does

not equal the current concrete value of z. Symbolically, DSE stores this constraint (z

!= x) as a path condition over the symbolic values of z and x as: 2*y_0 != x_0. DSE

then follows the “false” branch from this point, leading to the end of the program.

Now, DSE will backtrack to this branch point and attempt to take the “true” branch.

For this purpose, it negates the most recently added constraint in the path condition,

which is 2*y_0 != x_0, to 2*y_0 == x_0. It asks a solver to find a satisfying

assignment to the constraint 2*y_0 == x_0. There are certainly two integers satisfying

this constraint; let’s suppose the solver returns x_0 = 2 and y_0 = 1.



DSE then restarts the test_me function, this time calling it with the concrete input

values generated by the constraint solver: x = 2 and y = 1. The symbolic state begins

anew with x = x_0 and y = y_0.

After executing the first line, z takes on the concrete value 2 (the output of foo(y))

and, as before, the symbolic value 2 * y_0.



We next execute the branch condition z == x. In this case, the condition is true, so our

path condition becomes 2*y_0 == x_0 (substituting the symbolic values for z and x

into the branch condition). We then inspect the next line of the “true” branch of this

condition.

At this branch point, x has the concrete value 2 and y+10 has the concrete value 11, so

we take the false branch, terminating the program. We also add the symbolic

constraint x_0 <= y_0 + 10 to the path condition, which is the negation of the branch

condition we found to be false (with appropriate symbolic substitutions for the

variables x and y).



Since DSE has reached the end of the program, it negates the most recently added

constraint in the path condition to obtain x_0 > y_0 + 10, and then it passes the

constraints 2*y_0 == x AND x_0 > y_0 + 10 to the solver. The solver finds that there

is a solution to these constraints; in particular, it returns x_0 = 30 and y_0 = 15.

Now, DSE runs the test_me function again, this time with inputs x = 30 and y = 15.

The symbolic state again starts as x = x_0 and y = y_0.



z is assigned the concrete value 30, while its symbolic value is 2*y_0, as before. When we execute the branch condition z == x, we see that it is true, so we add the

symbolic constraint 2*y_0 == x_0.



Then, at the next branch point, the concrete value of x is indeed greater than the

concrete value of y plus 10, so we add the new symbolic constraint x_0 > y_0 + 10.

This branch leads us to the error, at which point we have identified a concrete input

which causes the program to fail: x = 30 and y = 15.

{QUIZ SLIDE}

Now that you’ve seen an example of how DSE works, take a moment to consider this

quiz. We are given a computation tree as follows: the program starts by checking

condition C1. If false, the program terminates. If true, the program checks condition

C2. Regardless of how C2 evaluates, the program terminates.

Which of these 8 constraints might DSE possibly solve in exploring this computation

tree? That is, select each constraint that might be fed to the constraint solver.

C1

C2

not C1

not C2

C1 and C2

C1 and not C2

not C1 and C2

not C1 and not C2



{SOLUTION SLIDE}

If DSE evaluates C1 and initially finds it to be false, then DSE will subsequently

attempt to solve C1. [Mark appears on C1.]

On the other hand, if C1 initially evaluates to true, then DSE will proceed to evaluate

C2.

If C2 is found to be true, then DSE will subsequently attempt to solve (C1 and not C2)

[mark appears on (C1 and not C2)]; however, if C2 is found to be false, then DSE will

subsequently attempt to solve (C1 and C2) [mark appears on (C1 and C2)].

Finally, after DSE finishes exploring the “true” subtree of C1, it will attempt to solve

(not C1) in order to try to explore the “false” subtree [mark appears on (not C1)].
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Let’s look at how dynamic symbolic execution handles a more complicated example.

Here, we’ve left the test_me function the same, but we’ve altered the behavior of foo

so that it now securely hashes its input and outputs the result of that hash.

DSE begins this example the same way as before: it takes the random inputs (we’ll

again use x = 22 and y = 7) and stores them in its concrete state; and it stores x = x_0

and y = y_0 in its symbolic state.

In this program, z is again assigned the output of foo(y). However, its concrete value

this time is a large number with over 150 digits, starting with the digits 601 and

ending in the digits 129. (Let’s ignore for now the overflow that would occur in some

languages in trying to store such a large number.) Symbolically, z takes on the value

secure_hash(y_0).



Comparing the concrete values of x and z shows that they are different, so the

symbolic constraint secure_hash(y_0) != x_0 is added to the path condition, and we

reach the end of the program.

In order to take the other branch, DSE needs to determine a pair of inputs x_0 and y_0

such that the most recently added constraint in the path condition evaluates to false.

That is, such that secure_hash(y_0) == x_0. However, the nature of a secure hash

function is that it is extremely difficult to solve an equation like this.

This example showcases the difference between symbolic execution, as previously

described, and dynamic symbolic execution. Recall that symbolic execution would

have thrown up its hands at this point and, by default, declared the constraint

secure_hash(y_0) == x_0 satisfiable, thereby continuing down the “true” branch of

execution.

Dynamic symbolic execution, by contrast, uses its concrete state to simplify the

symbolic constraint. In this case, it would replace y_0 in the symbolic constraint by 7,

the concrete value of y in the program at that point.



The constraint to be solved is then 601...129 == x_0, which is easy for our constraint

solver to solve: just take x equal to that number. (Note that it wouldn’t work to plug

in 22 for x_0 and then solve for y_0, as secure hashes are deliberately difficult to

invert.)

Dynamic symbolic execution re-evaluates the test_me function using these new

concrete inputs: x = 601...129, y = 7. The symbolic state as usual starts as x = x_0 and

y = y_0. Then,



The variable z is assigned foo(7), which is the output of the secure hash of 7. The

symbolic value of z is again secure_hash(y_0).

Now, at the branch point, the concrete values of x and z are indeed equal, so the “true”

branch is taken, as expected.



At the next branch point, we check whether x is greater than y + 10. The concrete

values of x and y satisfy this constraint (integer overflow notwithstanding), so we take

the true branch again, which leads to the error in the program.

{QUIZ SLIDE}

Now consider the following function, test_me, which takes the int x as an argument

and returns an int. The program reads as follows:

“int brackets A is assigned open-curly-brace five, seven, nine, close-curly-brace”

“int i is assigned zero”

“while i is less than 3 open-curly-brace”

“If A sub i is equal to x, break”

“Increment i”

“close-curly-brace”

“return i”

Suppose DSE tests this function starting with the input x = 1. Write the input used

and constraints solved in each iteration of DSE. Assume a depth-first search of the

program’s computation tree, and leave a trailing constraint blank if it is unused (for

example, if only two constraints are solved for some iteration, leave C3 blank for that

iteration). Also use the name x0 to represent the symbolic variable corresponding to

the input variable x.

I’ve filled in the first row for you: on iteration 1, the input x is 1, C1 is the constraint 5

does not equal x0, C2 is the constraint 7 does not equal x0, and C3 is the constraint 9

equals x0.



{SOLUTION SLIDE}

After the end of the first iteration of DSE, the constraint C3 forces the new input to be

9.

In the second iteration, the first path constraint added is 5 != x0, when the concrete

input 9 fails to equal A[0]. The second path constraint added is 7 != x0, and the third

path constraint added is 9 == x0, leading to the termination of the program. Normally

we’d negate the most recently added constraint and solve the resulting expression, but

this would lead us to take a path we’ve already explored. So the next step is to discard

the third path constraint and negate the second path constraint, resulting in C1 being 5

!= x0, C2 being 7 == x0, and C3 being left blank.

These constraints require the third concrete input to be 7. For the resulting run of

test_me, the first path constraint added is again 5 != x0, and then 7 == x0 would be

added before the program terminates. DSE has already fully explored the subtree

where 7 == x0 has been negated, so it needs to backtrack and negate 5 != x0 in order

to continue exploring the computation tree. So the only constraint to be solved is 5 ==

x0.

This forces the next concrete value of x to be 5, and this leads the program to

terminate after the first branch point, the only path constraint added being 5 == x0.

Negating 5 == x0 leads to a previously explored subtree, so there’s nothing left to do:

‹#›

the entire computation tree has been explored, and so DSE terminates. There are no

constraints to solve.

Note that this program has a bounded loop; in general, loops can result in infinite

computation trees, but in this case the tree remains finite. This example also illustrates

that not all conditions in the program (for example, the condition “i < 3”) result in

nodes in the computation tree. The reason is that only conditions that are data-

dependent upon the program’s input result in branch points in the computation tree.

Note also that even expressions such as A[i] are constants (being represented as 5, 7,

or 9 in the constraints) for the same reason: neither A nor i are data-dependent upon

the program’s input x.
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Let’s take a look at one more example to showcase how dynamic symbolic execution

differs from its static counterpart. Here, the foo function still returns a secure hash of

its input, but the test_me function operates as follows: if its inputs x and y are

different, then if foo(x) equals foo(y), the program throws an error. If either of these

conditions is false, then the program terminates without error.

Suppose DSE starts again with the concrete random inputs x = 22 and y = 7. The

symbolic state again is set to x = x_0 and y = y_0.



At the first condition, since the concrete values of x and y are different, the “true”

branch is taken, and we add the symbolic constraint x_0 != y_0 to the path condition.

At the second condition, the output of foo(22) and foo(7) is different, so we take the

“false” branch and add the symbolic constraint secure_hash(x_0) != secure_hash(y_0)

to the path condition.

In order to take the “true” branch of the second condition, we need to find a satisfying

assignment to the path condition with the most recently added constraint negated: that

is, we need to find x_0 and y_0 with the same secure_hash but so that x_0 != y_0.

Finding such a pair of inputs -- called a collision -- is a hard problem for

cryptographically secure hashes, so our solver is likely not going to be able to find

them.

It will first start by trying to simplify the constraint by inserting a concrete value for

one of the inputs: in this case, 7 for y_0.



The constraint has been partially simplified, but we are left with a similarly hard

problem for a secure hash function: finding an input with a specified output. We

know taking x_0 = 7 would work, but we can’t choose 7 because of the second

constraint that x_0 != 7. So DSE will use the other concrete value in its repertoire in

an attempt to simplify the condition: plugging in 22 for x_0.

Now the constraint is entirely concrete, with no symbolic quantities left. However, as

it stands, it is unsatisfiable, because the two large numbers in the equality condition

are different. In this case, the solver would declare the constraint unsatisfiable and

ignore the branch that satisfying the constraint would have led to.

This means that DSE would not find the error in the code, as the branch it lies on is

considered to be unreachable. In this example, DSE has returned a false negative: it

has failed to find the error in the code.

The difference between dynamic symbolic execution and “pure” symbolic execution

is therefore similar to the difference between dynamic and static analysis. Dynamic

analysis will never model a run of the code that could not actually occur, so it will

never return false positives: in other words, dynamic analysis is complete. But it can

miss actual runs of the code that lead to errors, so it is not sound.

In contrast, symbolic execution on its own will always take a branch that it isn’t sure

cannot be reached. So it may model runs of the program that could never happen,

sometimes returning spurious errors (hence it is incomplete), but it will take all

reachable branches as well, so it will never incorrectly declare a program to be error-

free (hence it is sound).



{QUIZ SLIDE}

So far we’ve focused on example programs with finite computation trees. However,

what properties does DSE exhibit in general when considering programs with possibly

infinite computation trees?

DSE is guaranteed to terminate.

DSE is complete: if it ever reaches an error, the program can indeed reach that error in

some execution.

DSE is sound: if it terminates and did not reach an error, the program cannot reach an

error in any execution.

Select all the statements that are true of DSE applied to such programs.

{SOLUTION SLIDE}

Remember that the undecidability of the halting problem implies that no program

analysis can have all three of these properties, so at least one of these statements will

be incorrect.

In an general program with unbounded loops, DSE (as we’ve described it in this

lesson) is not guaranteed to terminate. As an exercise, try to construct a short program

that DSE would be unable to finish its analysis on. Note however that we could make

DSE always terminate by specifying an arbitrary stopping condition (e.g., go no

deeper than 50 branch points).

DSE, despite being based on an incomplete theorem-proving strategy, turns out to be

complete. Any error it reaches corresponds to the execution of the program on a

concrete input, so the error can be reproduced by running the program on that same

input.

On the other hand, DSE is not sound. As we saw in the third example, even on finite

computation trees, the solver may fail to identify a solution to a given set of

constraints, leading DSE not to take a potential program path that would lead to an

error.
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So far we have seen DSE’s usefulness in the context of testing functions as units.

Now let’s take a look at how DSE could be used when the unit of test is a data

structure.

Previously, the tools we have seen to produce tests in this context are Korat and

Randoop. We could also use random testing for data structures, but the same problem

inherent to random testing still occurs: an error could be difficult to reach via

randomness alone.

In this example, we have a data structure which models a linked list in C++-like

syntax. We define the type “cell” to consist of an integer field named data and a

pointer to another cell, named next. We next define the function foo which takes an

integer v as its argument and returns the integer 2*v + 1. Finally, we define the

function test_me, which takes an integer x and a pointer to a cell called p, and does

four nested if-checks:

if x > 0

if p != NULL

if foo(x) == p->data, and

if p->next == p

If all four of these conditions are true, then the function throws an error. Otherwise,

the function returns 0.



‹#›

Here is what a typical random test driver would do. It would generate a random value

of x and a random memory graph (filling in random values for the data field in each

node) reachable from an initial pointer p to give to test_me. The probability that even

the third condition, foo(x) == p->data, is true is extremely small (in fact, 0 if p->data

is even). So it’s highly unlikely that the error in this function would be caught by a

random tester.

Dynamic symbolic execution, on the other hand, would find this error after at most

five runs of the test_me function.

For example, suppose the randomly generated inputs first given to test_me are x = 236

and p = NULL. As before, DSE stores both the concrete values of these variables and

their symbolic values, which we’ll call x_0 and p_0.



These concrete values lead DSE to take the “true” branch for the first condition, x > 0,

so it adds the symbolic constraint x_0 > 0 to the path condition.

But, because p is NULL, the condition p != NULL evaluates to false, and the function

returns 0. DSE stores the negation of this condition as p_0 == NULL in its path

condition.



As always, since the function has terminated, DSE will negate the most recently-

stored constraint in the path condition and then pass the conjunction of all the

constraints in the resulting path condition to the solver.

The solver will attempt to find values for x_0 and p_0 satisfying x_0 > 0 and p_0 !=

NULL. In this case, the solver will need to allocate memory for a cell data structure

and then generate values for the members of that cell. A satisfying assignment in this

case might be: x_0 = 236, p_0->data = 634, and p_0->next = NULL.

This forms the new concrete state for the next run of the test_me function. The

symbolic state is expanded as well with the symbolic values v_0 (assigned to p->data)

and n_0 (assigned to p->next).



The first condition again evaluates to true, so the symbolic constraint x_0 > 0 is added

to the path condition.

This time, the second condition, p != NULL, also evaluates to true, so the symbolic

constraint p_0 != NULL is added to the path condition.



But the third condition, foo(x) == p->data, evaluates to false, so the symbolic

constraint 2*x_0 + 1 != v_0 is added to the path condition.

DSE then passes the path condition (with 2x_0 + 1 != v_0 negated) to the solver to

attempt to find inputs that will satisfy the third branch condition.

The solver might come up with the following: changing x_0 to 1 and v_0 to 3, and

otherwise leaving the inputs the same.



DSE will then run test_me again with the new input values, adding the appropriate symbolic constraints to the path condition as each branch

condition is evaluated.



[no text] [no text]



Eventually, the fourth condition, p->next == p, evaluates to false, so the symbolic

constraint n_0 != p_0 is added to the path condition.

Negating this most recently added constraint, the solver then attempts to construct

inputs satisfying the constraints that x_0 > 0, p_0 != NULL, 2*x_0 + 1 == v_0, and

n_0 == p_0. In this case, it would just set p_0->next to point to the same place as p_0.

Now DSE takes one more stroll through the test_me function.



Each of the branch conditions for these inputs evaluates to true. [no text]



[no text] And, finally, the program’s error is triggered, so DSE has identified a particular

concrete input that triggers the error.



Dynamic symbolic execution is a hybrid approach to software testing that attempts to

strike a balance between the costs and benefits of dynamic and static analysis. As you

saw, it generates concrete inputs one-by-one such that each input takes a different path

through the program’s computation tree. And it executes the program both concretely

and symbolically.

These two types of execution cooperate with each other. On the one hand, the

concrete execution guides the symbolic execution. By replacing symbolic expressions

with concrete values if the symbolic expressions become too complex, the concrete

execution enables DSE to overcome the incompleteness of the theorem prover.

On the other hand, the symbolic execution allows DSE to generate new concrete

inputs for the next execution of the program. This increases the coverage potential of

DSE over other dynamic analyses such as pure random testing.

{QUIZ SLIDE}

Now that you’ve seen how DSE works, take some time to synthesize what you have

learned by answering these questions about the characteristics of DSE. Choose the

best answer for each question. As you answer, compare and contrast your answers

with the characteristics of previous types of analyses.



{SOLUTION SLIDE}

In the landscape of testing techniques, there are two separate spectra: automated

versus manual and black-box versus white-box. The quadrant of the landscape in

which DSE falls is automated & white-box. It is an algorithmic technique for deriving

inputs leading to programming errors, so it is certainly an automated technique.

Moreover, it requires access to the program’s code, so it is unequivocally a white-box

technique.

Let’s look at the second question. Different automated tools have different strategies

for searching the space of inputs for error-producing inputs. Examples of randomized

searches include Randoop, Monkey, and Cuzz, whereas Korat is an example of

systematic or enumerative search. DSE is also an example of a systematic search:

even though its first input is randomly generated, all remaining inputs are derived by

systematically solving constraints relevant to the program’s computation tree.

Third, by its very nature, DSE is a path-sensitive static analysis. The basis of its

operation requires distinguishing between different paths in a program’s computation

tree.

Finally, the instrumentation in DSE is non-sampled, as it is in the case of Korat

preconditions. An example of sampled instrumentation is statistical debugging

wherein the runtime overhead of tracking all instrumented predicates without

‹#›

sampling is prohibitive.
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Now that you’ve learnt how DSE works, let’s look at a few real-world examples

where DSE has been applied.

In a case study, DSE found two bugs in version 1.0.1 of SGLIB, a data structure

library for C that was inspired by the Standard Template Library from C++. Both the

bugs were reported to the authors of the library who fixed them in version 1.0.2

The first bug, in the doubly-linked list library, is a segmentation fault that occurs

when a non-zero length list is concatenated with a zero-length list. This bug was

discovered in 140 iterations in under 1 second. This bug is easy to fix by putting a

check on the length of the second list in the concatenation function.

The second bug, which is a more serious one, was discovered in the hash-table library

in 193 iterations in 1 second. Specifically, DSE constructed a valid sequence of

function calls which gets the hash-table library’s is_member function into an infinite

loop.

This table shows, for each data structure that SGLIB implements, the time that DSE

took to test the data structure in seconds, the number of iterations that DSE made, the

number of branches it executed, the branch coverage it obtained, the number of

functions it executed, and the number of bugs that it found.

Notice that the branch coverage in most cases is very high, approaching 100%. The

authors of the case study investigated the few branches that weren’t covered, and

found that most of them were in fact unreachable.

You can read more about this case study in the following technical paper:

http://mir.cs.illinois.edu/marinov/publications/SenETAL05CUTE.pdf



In another case study, DSE was applied to test a C implementation of a security

protocol: the Needham Shroeder public key protocol. This protocol is known to be

vulnerable to a man-in-the-middle attack. The implementation comprised 600 lines of

code. It took DSE fewer than 13 seconds on a machine with a 1.8 GHz CPU and 2

GB of RAM to discover this attack. In contrast, a software model checker Verisoft

that is suited for testing such protocols by using a state-space exploration technique

took 8 hours.

80



The remarkable success of dynamic symbolic execution has led to open-source as well

as commercial implementations of the technique for virtually all mainstream high-

level and low-level languages. Here is a listing of a few of these implementations:

KLEE based on the LLVM compiler which supports the C family of languages

including C, C++, Objective C, and Objective C++.

PEX for applications written using Microsoft’s .NET framework

jCUTE for Java programs

Jalangi for Javascript programs, and

SAGE and S2E for binaries on common architectures such as X86 and ARM.

As we illustrated using a series of examples in this lesson, DSE is useful for testing 

small units of code.  But it has also been applied to test entire, large, complex 

programs.  Let’s look at one of the most successful case studies in this category: the 

SAGE tool developed by Microsoft.

SAGE is an acronym for scalable automated guided execution.  To date, it has 

discovered many expensive security bugs in many Microsoft applications such as 

Windows and Office.   It is used daily in various Microsoft groups and runs 

continuously on 100s of machines.

What makes SAGE so useful?  There are several reasons.

First, it works on large applications, not just small units.  So it can detect bugs due to 

problems across components.

Second, it focuses on fuzzing input files, which are a typical kind of input to many 

applications.  For instance, a typical input to a web browser application is an HTML 

file.  This in turn enables SAGE to be fully automated: for instance, a user need not 

specify the input format of the application.

Third, SAGE works on x86 binaries, making it easy to deploy: in particular, it is not 

dependent on the programming language or build process used by the application.



‹#›

You can read more about SAGE by following these links:

http://research.microsoft.com/en-us/um/people/pg/public_psfiles/ndss2008.pdf

http://research.microsoft.com/en-us/um/people/pg/public_psfiles/talk-spin2009.pdf

Let’s look at an example of how SAGE is able to crash a real media parser

application.

SAGE begins with an input media file that has 100 zero bytes. The contents of each

byte are indicated by two adjoining zeros [point to the 00 00 00 portion of the file]. A

human-readable form of each byte is also shown here on the right [point to the …..

portion of the file].

In each successive iteration, SAGE replaces a subset of these bytes with characters

that it obtains by solving the path constraint of an execution of the media parser.

For instance, in the second iteration, it replaces the first four bytes by the characters

RIFF respectively, and in the third iteration, it replaces the 9th, 10th, 11th, and 12th

bytes by the characters *, *, *, and blank respectively. After a few more iterations, it

generates the input file that crashes the application.

In 60 machine hours, SAGE is able to automatically find 357 such crashes

corresponding to 12 unique bugs in this media parser application.
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Now that the module is coming to a close, let’s review what we have learned about

dynamic symbolic execution.

Symbolic execution is a technique for simulating the execution of a program on

symbolic inputs. It tracks symbolic constraints over such inputs to decide whether

certain paths of computation are possible. Dynamic symbolic execution, or DSE, is a

hybrid between symbolic execution and concrete execution that overcomes limitations

of using either of those approaches alone.

DSE systematically generates numeric and pointer inputs in order to explore a

program’s computation tree with as much coverage as possible while eliminating

redundant executions. (Recall that the computation tree is a model of all possible

paths that a program’s execution can take.) The goal of DSE is to determine if an

error is reachable under some input to the program.

DSE simultaneously tracks three pieces of information: the program’s current

concrete state, the program’s current symbolic state, and the symbolic constraints for

the execution so far, called the path condition. It uses the dynamic, concrete state to

simplify the static analysis part of constraint-solving, and it uses the static, symbolic

state to guide the dynamic analysis part of selecting non-redundant concrete inputs to

exercise next. In this way, it is a hybrid between dynamic and static analysis.

Finally, DSE is complete: if it reports an error, it is certain that the error can be

‹#›

reached on some run of the program (in fact, DSE can report the exact inputs to

generate the error). However, unlike pure symbolic execution, DSE has no guarantee

of soundness: it might fail to report an error in a program. Additionally, as we’ve

discussed in this lesson, DSE is not guaranteed to terminate in the presence of input-

dependent loops, as these loops may unroll into infinitely many paths in the

computation tree. However, we can modify DSE to terminate after exploring a finite

number of paths in the computation tree, giving up soundness in the process.


