
Often when debugging, we find ourselves with the problem of having an input that

crashes a program but not knowing what aspect of the input is causing the program’s

failure. For example, a webpage with hundreds of lines of HTML crashes a browser,

or a random sequence of keystrokes crashes a smartphone app. Isolating the cause of

the failure would be enormously helpful in finding what change needs to be made to

the program’s code.

One automated technique for paring down large failing inputs is delta debugging.

Delta debugging is based on the scientific method: hypothesize, experiment, and

refine. By selectively and systematically removing portions of the input, delta

debugging automatically removes irrelevant information from a failing test case in

order to attain a “minimal” bug-inducing input.

2



3

A typical bug report contains a lot of information that the developer can use to

reproduce the program failure. Once we have reproduced a program failure, we must

find out what information is relevant. For instance,

Does the failure really depend on 10,000 lines of code?

Does the failure really require this exact schedule of events?

Does the failure really need this sequence of function calls?



Simplifying the information in a bug report down to only what is relevant is important

for several reasons.

First is ease of communication: a simplified test case is easier to communicate to

members of the development and testing team.

Second is that simpler test cases lead to easier debugging: a smaller test case results in

smaller states and shorter executions.

Third is that it allows us to identify and collapse duplicate issues: a simplified test

case can subsume test cases in several bug reports.

Let’s look at a real-world scenario which should help motivate the necessity for bug

minimization.

In July of 1999, Bugzilla, the Mozilla bug database, had over 370 unresolved bug

reports for Mozilla’s web browser. These reports weren’t even simplified, and the bug

queue was growing by the day. Mozilla’s engineers became overwhelmed with the

workload.

Under this pressure, the project manager sent out a call for volunteers for the Mozilla

BugAThon: volunteers to help process the bug reports. Their goal was to turn each

bug report into a minimal test case, in which each part of the input is significant in

reproducing the failure. The volunteers were even rewarded with perks for their work:

volunteers who simplified 5 reports would be invited to the launch party, and those

who simplified 20 reports would receive a T-shirt signed by the engineering team.

Clearly, Mozilla would have benefitted from an automated bug minimization process

here!



Let’s look at a concrete bug report in the Mozilla bug database.

Consider this HTML page. Loading this page using a certain version of Mozilla’s web

browser and printing it causes a segmentation fault. Somewhere in this HTML input

is something that makes the browser fail. But how do we find it?

If we were the developers of the Mozilla web browser that crashes on this input, we

would want the simplest HTML input that still causes the crash.

So how do we go from this large input to ...

this simple input -- a mere select tag -- that still causes the crash?



9

What do we as humans do in order to minimize test cases?

One possibility is that we might use a binary search, cutting the test case in two and

testing each half of the input separately. We could even iterate this procedure to

shrink the input as much as possible. Even better, binary search is a process that can

be easily automated for large test cases!



Let’s see how this application of binary search might work. This bar here represents the original failure-inducing input to a program.



If one half of the input causes the program to fail, then we can eliminate the second

half of the input and attain a smaller, failure-inducing input.

We can repeat the procedure on the new, smaller failing input; in this case, the first

half of the halved input causes the program to fail, so we can throw away the second

half. We are left with an input that induces a failure but which is a quarter of the size

of the original input.



Repeating the procedure, we might find that the first half of the new input does not

crash the program ...

... but that the second half does cause the program to fail. In this case, we’d remove

the first half and keep the second half to obtain yet a smaller failure-inducing input.



Iterating again, we might find that the first half of the new input does not crash the

program ...

... and so does the second half.



In this case, binary search can proceed no further. The simplified input is this dark

green portion of the bar, one-eighth the size of the original input, which is good

progress! While this is a good first solution, however, we shall see next that a naïve

binary search is not always adequate to sufficiently minimize the input.

20



21

We can apply the binary search algorithm to minimize the number of lines in the

HTML input we saw earlier: the one that crashed Mozilla’s web browser. We’ll

assume line granularity of the input for this purpose; that is, we only partition the

input at line breaks.

The algorithm outputs the following line …



simplifying from 896 lines in the original input to this single line, in only 57 tests. Suppose that we wish to further simplify this input using character-level granularity to

obtain the desired output comprising only the <SELECT> tag. Let’s see how the

binary search algorithm works this time.



The initial input consisting of the entire line causes the browser to crash. The first half of the line doesn’t cause the browser to crash.



And the second half of the line also doesn’t cause the browser to crash. At this point,

binary search says we’re stuck, since neither half of the input induces a failure on its

own. Is there some other way we can minimize the input?

Let’s generalize the binary search procedure a bit. Instead of requiring ourselves to

divide inputs strictly in half at each iteration, we could allow ourselves more

granularity in dividing our input.

Perhaps we could divide up our input into many (possibly disconnected) subsets at an

iteration and only keep those which are required to cause a failure. In particular, we

can break up the input into blocks of any size, called “changes” from the original

input. (The traditional use of the Greek letter “delta” for change is the origin of the

name “delta debugging.”) We can then use subsets formed from these blocks. Perhaps

we just use a single block, perhaps we use several blocks concatenated together, or

perhaps we use noncontiguous blocks (for example, block delta-1 and block delta-8)

to form subsets for testing.



{QUIZ SLIDE}

This gives us two opposing strategies with their own strengths and weaknesses.

Take a moment to consider what might happen if we allow the granularity of the input

changes we use to be finer or coarser.

Finer granularity means our input is divided into more, smaller blocks; coarser

granularity means our input is divided into fewer, larger blocks.

What would happen to the chance of finding a failing subset of the input? And how

much progress would we make if we found a failing subset of the input?

Fill in each box with the appropriate letter: A for slower progress, B for higher chance

of finding a failing subset, C for faster progress, and D for lower chance of finding a

failing subset.

{SOLUTION SLIDE}

By testing subsets made up of larger blocks (coarser granularity), we lower our chance

of finding some subset of the blocks that fails a test, but we have fewer subsets that we

need to test. Additionally, upon finding a subset of blocks that fails, we can eliminate

a large portion of the input string. This means our progress toward a minimal test case

is faster.

On the other hand, by testing subsets made up of smaller changes (finer granularity),

we have more subsets that we have to test; and upon finding a subset of changes

which causes failure, we typically can only remove small portions of the input string.

These both slow our progress towards finding a minimal failing test case. However,

the tradeoff is that by testing more subsets, we increase our chance of finding a

smaller subset that actually does cause a failure. Indeed, we could go so far as to

making the granularity of the input changes one character in size, which would

guarantee we find the minimum failing test case, but this strategy in the worst case

would take exponential time in the length of the input.



31

The key insight of delta debugging is that it combines the best of both approaches. At

first, it divides the input into larger blocks, and it tests all subsets of these changes for

failure. As the algorithm becomes unable to find subsets that fail the test, delta

debugging increases the granularity of its changes, testing subsets formed from

smaller blocks for failure.



33

Let’s see how delta debugging would proceed with our example from earlier. Recall

that neither half of the original input string caused a crash in Mozilla’s browser.

34

Using delta debugging, we increase the granularity of the blocks we will use to create

subsets, by decreasing their size by a factor of two. We first test the subset formed

from the second, third, and fourth blocks: this subset doesn’t cause a crash since it

does not include the <SELECT> tag.



35

Next we test the subset formed from the first, third, and fourth blocks. This does

cause a crash, since it includes the <SELECT> tag, so we can eliminate the second

block from consideration altogether.

36

Next, let’s see what happens if we keep only the first and fourth blocks. Again, this

causes a crash, since it includes the <SELECT> tag, so we can eliminate the third

block from consideration.



37

Removing the fourth block causes the input to pass the test, as the closing bracket of

the <SELECT> tag is missing in this input. So we would end up keeping the first and

fourth blocks and increasing the granularity before continuing to test subsets ...

... until we eventually end up with the minimal failing input, comprising only the

<SELECT> tag, after 48 iterations.



39

Now that we’ve seen an example of how delta debugging would work in practice, let’s

formally define the algorithm so that we can analyze its properties and prove that it

will work as expected.

Let R be the set of all possible inputs that we wish the delta debugging algorithm to

consider. We’ll use r_P to denote an element of R on which the program passes, and

r_F to denote an element of R on which the program fails.



An example of r_p is any of the following passing inputs, such as [hand-circle any

input with a tick mark].

An example of r_f is any of the following failing inputs, such as [hand-circle any

input with a cross mark].

The key building block in the delta debugging algorithm is the concept of a change,

which is how one input is transformed into another.

Formally, a change is a mapping from the set of all test inputs to itself. In other words,

it’s a function that takes a test input r_1 and returns another test input r_2.

[In the Mozilla example from earlier, applying δ means to expand a trivial (empty)

HTML input to the full failure-inducing HTML page.]



As an example, the operation of inserting the string ME=”priori between the 10th and

11th character positions of the input would be an example of a change function

relevant to the Mozilla example from before.

Other examples of change functions are the operation of concatenating a semicolon at

the end of a string, removing the first character of a nonempty string, and reversing

the order of a string. Even the function that simply returns its input string is a change:

it serves as the identity change function.

We next introduce the concept of decomposing a change function into a number of

elementary change functions such that applying each elementary change in order to an

input r has the same effect as applying the original change to that input r all at once.

For example, suppose deleting a line from an input file results in a failure. We can

decompose this deletion to a sequence of individual character deletions.



Looking again at our Mozilla example from before, we can decompose the change

denoted by delta’, which represents inserting this string at input position 10, into

elementary changes as follows.

delta’ = delta_10 composed with delta_9 composed with so forth down to delta_1,

where

delta_1 is the change that inserts the character M at position 10

delta_2 is the change that inserts the character E at position 11

… and so on.

Note that what we consider an elementary change can depend on the context of the

problem. We could consider insertions and deletions of lines in a file to be

elementary. Or if we are using delta debugging on a set of binary parameters for a

program, an elementary change might be switching one bit on or off.

Let’s review the setup we have going into the delta debugging algorithm.

We have an input on which our program passes: r_p. We have an input on which our

program fails: r_f. And we have a set of elementary changes, which we’ll call c_f,

such that applying the changes in order to r_p yields r_f.

Note that r_p is typically a simple input on which the program trivially passes, such as

the empty input, and r_f is typically a complex input on which the program fails, and

that we would like to minimize. In the case of Mozilla web browser, r_p could be a

blank HTML file, and r_f is the full HTML file that causes the browser to crash.

Subsets of c_f will be important in the delta debugging algorithm, so we will

distinguish them henceforth by calling them test cases.



47 48



Given a test case, that is, a subset of the changes, we want the ability to apply that

subset of changes to the passing input r_p and determine if the resulting input causes

the program to fail in the same manner as the failing input r_f.

To formalize this notion, we define the function test which takes a subset of c_f and

outputs one of three characters based on the outcome of our test.

We distinguish these three test outcomes following the POSIX 1003.3 standard for

testing frameworks.

If the test succeeds, the test function outputs PASS, written here as P.

If the test produces the failure it was intended to capture, the test function outputs

FAIL, written here as F.

And if the test produces indeterminate results, the test function outputs

UNRESOLVED, written here as ‘?’.

The goal of delta debugging is to find the smallest test case c such that test(c) = F. In

other words, to find the smallest set of changes we need to apply to passing input r_p

in order to result in the same failure as the failing input r_f.

We call a failing test case a global minimum of c_f if every other smaller-sized test

case from c_f does not cause the test to output F. In other words, any smaller-sized

set of changes either passes the test or causes the test to be unresolved.

The global minimum is the smallest set of changes which makes the program fail; but

finding the global minimum may require performing an exponential number of tests:

if c_f has size n, we’d need to perform in the worst case 2^n tests to find the global

minimum.



Instead of searching for the absolute smallest set of changes that causes the failure, we

can approximate a smallest set by reformulating our goal.

We will find a set of changes that causes the failure but removing any single change

from the set causes the failure to go away.

Such a set of changes is called 1-minimal.

More formally:

Define a failing test case C to be a local minimum of C_F if for every proper subset

C’ of C, applying the test function to C’ doesn’t produce a failure. This is in contrast

to a global minimum in the following way: for a local minimum, we only restrict our

attention to subsets of the local minimum test case; for a global minimum, there must

be no smaller test case that causes a failure.

Define a failing test case C to be n-minimal if for every proper subset C’ of C, if the

difference in size between C’ and C is no more than n, then the test function applied to

C’ does not cause a failure. In other words, C is n-minimal if removing between 1 and

n changes from C causes the test function to no longer fail. Just as local minimality is

a weakening of the notion of global minimality, n-minimality is a weakening of the

notion of local minimality.

And 1-minimality is the weakest form of n-minimality: a failing test case is 1-minimal

if removing any single change from that test case causes the test function to no longer

fail.

Even though 1-minimality is not nearly as strong as global or even local minimality,

we focus on it because it is still a strong criterion: it says that the test case cannot be

minimized incrementally. And we can program an efficient algorithm for applying

and testing incremental changes.



{QUIZ SLIDE}

Let’s stop here to check your understanding of the different types of minimality with a

quiz.

Suppose a program takes a string of ‘A’s and ‘B’s as input, and it crashes if given an

input with an odd number of ‘B’s AND an even number of ‘A’s.

Because ‘BABAB’ has an odd number of ‘B’s and an even number of A’s, it is a

failing input to the program. If we take r_p to be the empty input and r_f to be

‘BABAB’ and consider inserting each character to be a separate change, then c_f will

be a set of five elementary changes.

Previously we defined a test case to be a subset of these changes, which was a set of

delta functions. For brevity, we won’t use the delta notation in this quiz; instead,

we’ll slightly abuse terminology and just consider test cases to be the subsequences of

‘BABAB’ that result from applying those changes in a subset of c_f.

Here, I’d like you to enter four failure-inducing test cases that are subsequences of the

input ‘BABAB’ satisfying the following constraints:

First, find the the global minimum test case (that is, the smallest possible failing

subsequence)

‹#›

Second, find a local minimum that is not the global minimum

Third, find a 1-minimal failing test case of size 3

And lastly, find a 2-minimal failing test case of size 3

If no subsequence of ‘BABAB’ exists satisfying the constraints, enter the word

“NONE” instead.



{SOLUTION SLIDE}

Let’s start with the global minimum. Notice that the program crashes only on

nonempty inputs (since we need to include at least one ‘B’ to have an odd number of

‘B’s), we start by considering subsequences of size 1. The only input of size 1 with at

least one ‘B’ is the string consisting of just ‘B’. This subsequence fails the test (it has

1 ‘B’ -- an odd number, and 0 ‘A’s -- an even number). Since ‘B’ is the smallest

possible failing subsequence of ‘BABAB’, it is the global minimum failing test case.

Next, let’s try to find a local minimum that is not a global minimum. Remember that

no proper subsequence of a local minimum can fail. But earlier we said that all failing

subsequences will need at least one ‘B’. So every failing subsequence of ‘BABAB’

itself has a failing subsequence: ‘B’. So the only local minimum is ‘B’ itself, so there

are no local minima that are not global minima.

Now, let’s try to find a 1-minimal failing subsequence of ‘BABAB’ of size 3. First,

we’ll list all failing subsequences of size 3: we need at least one ‘B’, and we need an

even number of ‘A’s. This means we can either have 2 ‘A’s and 1 ‘B’ or 3 ‘B’s.

There are four subsequences of ‘BABAB’ that satisfy this criterion: ‘AAB’, ‘ABA’,

‘BAA’, and ‘BBB’.

Now let’s see which of these are 1-minimal. Remember that a failing test case is 1-

minimal if, no matter which change we remove, we get a passing test case. Now,

‹#›

removing one character from any of these strings results in changing the parity of

either the ‘A’s or the ‘B’s, meaning that the new subsequence will not cause a crash.

Thus, all of these subsequences are 1-minimal.

Are any of them 2-minimal, however? This means that, in addition to removing one

character, removing any two characters arbitrarily still causes the subsequence to pass.

In this case, however, by removing two characters and leaving just a single ‘B’, we

obtain a failing input. So none of these test cases are 2-minimal.



55

Now, let’s think about how to build an algorithm to find a 1-minimal subset of a given

set of changes c; we would then apply this algorithm to find the 1-minimal subset of

the set of all changes by setting c to c_F.

One straightforward approach that might occur to us is to do the following: Iterate

through each change delta_i in c, testing whether the set c minus delta_i fails or not.

If we find a change delta such that c without delta still induces failure, then we call the

algorithm recursively on c’ = c - {delta}. On the other hand, if every change’s

removal causes the test to stop failing, then c is 1-minimal, so we return c.



How well does this naive approach work? Well, in the worst case, we would remove

the last change in the list per iteration after testing all previous changes.

If we start with N elements, then we perform up to N-i tests on the ith iteration

(starting from iteration 0). The total number of tests in the worst case would then be N

plus N-1 plus N-2 and so forth.

For large values of N, this is approximately one-half N^2, or O(N^2) in asymptotic

notation.

We can often attain better performance than the first, simplest algorithm we thought

of. Let’s try to see if we can improve our algorithm’s performance by making some

modifications.

What’s one place where we are losing time in our algorithm?

Recall our discussion earlier about the strengths and weaknesses of coarser versus

finer granularity. Checking one change at a time is very fine granularity, which

allows for a greater chance of success in finding a failure-inducing subset of changes.

But it is also more time-consuming. If we start with very coarse changes at first, we

might be able to save a lot of time; only if we can’t make any progress should we

refine our granularity and increase the number of subsets we test.



Here is a sketch of the delta debugging minimization algorithm invented by Andreas

Zeller who originally proposed delta debugging. The algorithm finds a 1-minimal test

case from the given set of changes c_F.

It starts with n = 2, and divides the set c_F up into n pairwise-disjoint pieces, called

Delta_1 through Delta_N. (We use capital deltas here to represent subsets of c_F

instead of individual changes in c_F.)

We also use Nabla, the upside-down capital Delta, to represent the complement in c_F

of each capital Delta. In other words, all the changes in c_F which aren’t in Delta_i

are in Nabla_i.

The algorithm then applies the test function to each Delta_i and each Nabla_i.

If one of these test cases fails, then the algorithm reduces the current input down to the

input obtained by just applying the changes in the failing test case. If none of the test

cases fails, though, then the algorithm refines its granularity by doubling n and

recomputing new subsets Delta_i and Nabla_i.

Here is the algorithm again, this time in more structured pseudocode. It has two

parameters n and Delta.

It starts with n = 2 and Delta equal to c_F, the full set of elementary changes.

Given n and Delta, the algorithm divides Delta up into n pieces, Delta_1 through

Delta_n, and computes Nabla_1 through Nabla_n appropriately.

It then tests each Delta_i and Nabla_i using the test function. There are three possible

outcomes:

If some Delta_i causes the test function to fail, then we go back to step (1), this time

with Delta = Delta_i and resetting n to 2.

Otherwise, if some Nabla_i causes the test function to fail, then we go back to step

(1), this time with Delta = Nabla_i and decrementing n by 1.

If none of the test cases causes a failure, then we have two possibilities:

If the granularity is not yet at its maximum (n < size of Delta), we return to step (1),

leaving Delta the same and doubling the granularity.

If the granularity is already at maximum (n >= size of Delta), then this means each

capital Delta_i consists of a single change, and removing any single change causes the

test case to no longer fail. Thus, the test case is 1-minimal, and we stop.



Let’s analyze this algorithm’s complexity and see how it compares to our previous

attempt.

Unfortunately, the worst-case complexity of delta debugging minimization is still

quadratic in the number of elementary changes: it could be the case that we need to

subdivide until we reach maximum granularity and then we remove one change at a

time, effectively doing the same amount of work as the naive algorithm.

(As an exercise for yourself, try to come up with an example of a test function and

family of inputs that would give this worst case scenario!)

The good news is that in the case where we find a failure in either Delta_1 or Delta_2

in each iteration, convergence to the 1-minimal test case takes only a logarithmic

number of tests (much like binary search).

{QUIZ SLIDE}

Let’s work through an example of the minimization algorithm in the form of a quiz.

Suppose a program crashes whenever its input contains the substring ‘42’, and

suppose we start with the original failing string ‘2424’. Assuming that each

elementary change consists of inserting a single character, let’s see how the algorithm

would minimize this string.

First, begin by filling in the number of partitions we would make of the string Delta,

and write in the strings that would form our test cases. Please separate the strings by

commas, and don’t surround the strings by quotation marks. Also feel free to ignore

duplicate strings (for example, if both Delta_1 and Delta_2 are the same in some

iteration, you just need to write it once).

Finally, if Delta cannot be partitioned evenly into n groups, split it into groups as

evenly as possible.



{SOLUTION SLIDE}

In the first iteration, we start with n = 2, and dividing Delta = 2424 into two even

groups gives the same string for all of Delta_1, Delta_2, Nabla_1, and Nabla_2: 24.

Since 24 does not cause the program to fail, we leave Delta the same for iteration 2

but double the number of partitions to 4.

Dividing up 2424 into four partitions yields

Delta_1 = Delta_3 = 2

Delta_2 = Delta_4 = 4

Nabla_1 = 424

Nabla_2 = 224

Nabla_3 = 244, and

Nabla_4 = 242.

Nabla_1 and Nabla_4 are the only ones that fail, so we may choose either of them as

Delta and proceed. Either way, we would decrement n by 1 to get n = 3.

If we picked Nabla_4 = 242, then our partition would yield

Delta_1 = Delta_3 = 2

Delta_2 = 4

Nabla_1 = 42

Nabla_2 = 22, and

‹#›

Nabla_3 = 24.

(If we had picked Nabla_1 = 424 earlier in iteration 2, then our partition would yield

the same set except that 22 would be replaced by 44.)

Either way, the only failing test case would be 42, which we take Delta to be. We also

decrement n to 2.

Finally, partitioning 42 into two parts gives Delta_1 = Nabla_2 = 4 and Delta_2 =

Nabla_1 = 2.

None of these test cases fails, and we observe that n equals the size of Delta. Thus, our

algorithm terminates and returns Delta = 42 as the minimized failing test case.



64 65



In the rest of this module, I will illustrate the versatility of delta debugging using a

series of case studies conducted by the author of the technique.

You can learn more about these case studies as well as the delta debugging technique

by following this link to a technical paper:

https://www.st.cs.uni-saarland.de/publications/files/zeller-tse-2002.pdf

The following C program, denoted bug.c, causes GCC version 2.95.2 with

optimizations enabled to crash. This program consists of three functions: mult, copy,

and main. Suppose we wish to minimize the program to file a bug report on GCC.

Delta debugging can be used to achieve this goal. For the GCC program, a passing

input is the empty input. And, for the sake of simplicity, let’s model each change as an

insertion of a single character. Then, in the terminology of the delta debugging

algorithm, test r_p denotes running GCC on an empty input, test r_f denotes running

GCC on bug.c, which is this entire input, and each change delta_i denotes inserting

the i_th character of bug.c.

We next write the test procedure to be provided to the delta debugging algorithm.

This procedure consists of three steps. First, it creates the appropriate subset of bug.c.

Next, it feeds this subset to GCC. Finally, it returns Failed if GCC crashes, and Passed

otherwise.

We then run the delta debugging algorithm using this test procedure. In only the first

two tests, the algorithm reduces the input size from 755 characters to 377 and 188

characters, respectively.



The test case now only contains the mult function: the copy and main functions have

been eliminated. Reducing mult, however, takes time. Only after 731 more tests do

we get a test case that cannot be minimized further. This test case only contains 77

characters.

This test case is 1-minimal, because no single character can be removed while still

causing GCC to crash. Notice how every superfluous whitespace has been removed.

Even the function name has shrunk from mult to a single letter t, and the original loop

has been converted to an infinite loop. But GCC still isn’t supposed to crash.

As GCC users, we can now file this one-line program as a minimal bug report. But

where in the GCC code could the bug be? We already know it is related to GCC

optimization: the crash disappears if we remove the -O option on the command line to

turn off optimization.



Now, the GCC documentation lists 31 different options to control optimization. It

turns out that applying all of these options causes the crash to disappear. This means

that some options in this list prevent the crash.

We can again use the delta debugging algorithm to find the crash-preventing options.

This time, the passing test r_p denotes running GCC with all options, the failing test

r_f denotes running GCC with none of the options, and each change delta_i denotes

removing the i^th option.

After 7 tests, the algorithm reports that option -ffast-math prevents the crash.

Unfortunately, the –ffast-math option is a bad candidate for working around the

failure, because it may alter the semantics of the program. So we remove –ffast-math

from the list of options and re-run the delta debugging algorithm. Again after 7 tests,

it turns out the option –fforce-addr also prevents the crash.

So far, we have determined that 2 of the 31 options prevent the crash. Running GCC

with the remaining 29 options shows that the crash persists; so it seems we have

identified all the crash-preventing options.



So this is what we can send to the GCC maintainers:

1. The minimal test case

2. The fact that “The crash occurs only with optimization”

3. and the fact that optimization options “–ffast-math and –fforce-addr prevent the

crash.”

While we as GCC users cannot identify a place in the GCC code that causes the

problem, we have identified as many failure circumstances as we can.

73



Another application of delta debugging is in the minimization of fuzz input, in which

a program is fed with randomly generated inputs and observed to see if it crashes.

Typically the failure-inducing inputs found by fuzzing are large; delta debugging can

be used to reduce such inputs down to smaller inputs causing the same mode of

failure.

Recall from the module on random testing that Bart Miller and his team examined the

robustness of UNIX utilities by feeding them fuzz input -- a large number of random

characters. The studies showed that 40% of these programs crash when fed with fuzz

input.

The author of delta debugging successfully applied the technique to minimize the fuzz

inputs that crash a subset of the UNIX utility programs. For example, the technique

only required 24 tests to minimize a fuzz input comprising a 10^6 characters that

crashes CRTPLOT to a single character that still crashes CRTPLOT in the same

manner.

Yet another application of delta debugging is to isolate changes to source code that

cause program failure.

You likely have had this experience: one day, your program works fine; the next day,

it does not, and you need to figure out why.

Perhaps the amount of code that’s changed is quite large. For example, a certain

release of GDB (the GNU debugger on UNIX) changed 178,000 lines. After this

release, GDB no longer integrated correctly with the Data Display Debugger (or

DDD), a common graphical user interface for GDB. How should the GDB maintainers

determine which changed line (or lines) among those 178,000 lines is the culprit?

The solution is to use the delta debugging minimization algorithm with the passing

input r_p being “yesterday’s code” and the failing input r_f being “today’s code.”

This allows you to pinpoint what specific change is making the code to no longer

work.

Further reading on this topic can be found at:

https://www.st.cs.uni-saarland.de/publications/files/zeller-esec-1999.pdf



76 77



{QUIZ SLIDE}

As we close this lesson, let’s recap the key concepts with the following quiz. Check

all the statements that are true about delta debugging.

The technique is fully automatic.

It finds a 1-minimal test case instead of a local minimum test case due to performance

reasons.

It finds the smallest failing subset of a failing input in polynomial time.

It may find a different sized subset of a failing input depending on the order in which

it tests different input partitions.

It is also effective at reducing nondeterministically failing inputs.

{SOLUTION SLIDE}

Let’s tackle each of the statements in order.

The technique is fully automatic. This is false because one has to define the space of

input changes, or deltas, which is application-specific, as well as what constitutes a

passing versus failing program run under each possible input.

Delta debugging finds a 1-minimal test case instead of a local minimum test case due

to performance reasons. This is true: finding a local minimum (in the worst case) can

also take exponential time in the number of changes. Finding a 1-minimal test case,

however, takes at worst quadratic time.

Delta debugging finds the smallest failing subset of a failing input in polynomial time.

This is false. The algorithm does not find the smallest failing subset: such a subset is

the global minimum, which takes exponential time in the number of changes to find.

Delta debugging may find a different sized subset of a failing input depending on the

order in which it tests different input partitions. This is also true, and here’s a simple

example to illustrate why. Consider a program that fails if its input contains either ‘a’

or ‘bb’. The input ‘aabb’ therefore crashes. If the minimization algorithm examines

‘aa’ before ‘bb’ on the first iteration, then it will end up with the 1-minimal test case

‘a’; on the other hand, if it examines ‘bb’ before ‘aa’ on the first iteration, it will end



‹#›

up with the 1-minimal test case ‘bb’.

Delta debugging is also effective at reducing non-deterministically failing inputs. This

is false. The algorithm only functions correctly assuming that program failure is

deterministic.

80



Let’s conclude by reviewing what we have learned about delta debugging in this

module.

First of all, delta debugging, like random testing, is a technique, as opposed to a tool

that can be used out-of-the-box. A limitation of the technique is that it is not readily

portable across programs: it needs to be re-implemented for each significant system in

order to exploit knowledge changes that are specific to the system. For example, a

delta-debugging implementation for testing whether Mozilla’s browser crashes differs

from one for testing optimization flags for the GCC compiler: these two scenarios

have different notions of what constitutes an elementary change (perhaps a line or a

character is an elementary change for the browser while a binary flag is an elementary

change for the compiler).

The good news is that the delta debugging algorithm is relatively simple and provides

excellent payoff for the effort it takes to implement it; therefore, it is worth re-

implementing it across several systems.


